Production of reproductively sterile fish by a non-transgenic gene silencing technology
نویسندگان
چکیده
We developed a novel bath-immersion technology to produce large numbers of infertile fish. As seafood consumption shifts from fishery harvests towards artificially propagated species, optimization of aquaculture practices will be necessary to maximize food production and minimize ecological impact. Farming infertile fish is the most effective genetic-containment strategy to support the development of environmentally-responsible aquaculture. We discovered that a molecular transporter, Vivo, can effectively carry the Morpholino oligomer (MO) across the chorion, enter the embryo and reach target cells. Vivo-conjugated MO against zebrafish deadend (dnd-MO-Vivo) effectively caused primordial germ cell mis-migration and differentiation into somatic cells, which resulted in generation of infertile fish. Optimal conditions were achieved when embryos, immediately after fertilization, were immersed with dnd-MO-Vivo at the initial concentration of either 60 or 40 μM followed by a lower serially diluted concentration. Under these conditions, 100% induced sterility was achieved even when the total immersion time was reduced from 24 to 5 hours. In 8 independent experiments, 736 adults developed from these conditions were all found to be infertile fish that possessed minimally-developed gonads that lacked any gametes. The results demonstrate that dnd-MO-Vivo bath immersion is an effective strategy to produce infertile fish without introducing transgenic modifications.
منابع مشابه
The Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology
have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...
متن کاملTransient expression of coding and non-coding regions of PVY confer resistance to virus infection
One of the most efficient mechanisms by which plants protect themselves from invading virusesis the specific RNA-dependent silencing pathway termed post-transcriptional gene silencing(PTGS). In this mechanism, resistance to a virus is engineered through the expression of asegment of the virus genomein transgenic plants. Potato VirusY (PVY) is one of the mostdamaging viruses of potato, infecting...
متن کاملSugarcane Mosaic Virus-Based Gene Silencing in Nicotiana benthamiana
Background:Potyvirus-based virus-induced gene silencing (VIGS) is used for knocking down the expression of a target gene in numerous plant species. Sugarcane mosaic virus (SCMV) is a monopartite, positive single strand RNA virus. Objectives:pBINTRA6 vector was modified by inserting a gene segment of SCMV in place of Tobacco rattle virus (TRV) genome part 1 (TRV1 or RNA1)...
متن کاملUtility of P19 Gene-Silencing Suppressor for High Level Expression of Recombinant Human Therapeutic Proteins in Plant Cells
Background: The potential of plants, as a safe and eukaryotic system, is considered in the production of recombinant therapeutic human protein today; but the expression level of heterologous proteins is limited by the post-transcriptional gene silencing (PTGS) response in this new technology. The use of viral suppressors of gene silencing can prevent PTGS and improve transient expression level ...
متن کاملThe necessity of transgenic technology in sustainable production
It has been more than half a century that plant geneticists and breeders have been trying to assemble a combinationof genes in crop plants, in order to make them as suitable and productive as possible. Plant transformation technology incrop plants was first undertakenin the 1980s based on the ability of foreign gene integration into host plant genome andregeneration of transformed plant cells i...
متن کامل